Aprender y comprender no son sinónimos


Cuando era un crío y me enseñaron el Teorema de Pitágoras (tal vez en 5º o en 6º de EGB, no recuerdo) lo primero que mi mente de chorras impenitente pensó es que resultaban graciosísimos aquellos nombres tan raros: cateto e hipotenusa. Lo del cuadrado y la suma era algo en lo que no pensé demasiado, cosas de una fórmula más que había que memorizar para aprobar la asignatura.

En aquel curso, para mi un cuadrado era un número multiplicado por si mismo y punto; no se me ocurrió ligarlo a la figura geométrica homónima con la que me habían bombardeado desde los tiempos de Barrio Sésamo. Ahora, tras ver este vídeo, pienso que si el profesor de turno nos lo hubiera mostrado (o nos hubiera hecho este sencillo experimento mesa por mesa) insistiendo en que el cuadrado de un cateto o de una hipotenusa (lado x lado, osea el resultado de calcular su área) era realmente un “cuadrado”, la cosa habría quedado mucho más clara.

En cambio, simplemente memoricé la fórmula y su relación de igualdad sin visualizar polígonos auxiliadores por ningún lado. Una pena, porque el concepto resulta tan evidente cuando se aprende de forma empírica con este antiguo juguete chino, que estoy convencido de que habría disfrutado muchísimo comprendiendo su belleza. Y es que aprender y comprender son dos cosas distintas.

Aunque nunca es tarde ¿verdad?

14 Comentarios

  1. 1 Ioritz Ioritz 11 Jul 2011 0 (0 Votos)

    aprender y comprender no son lo mismo dependiendo de como comprendas aprender. Porque aprender y memorizar tampoco son lo mismo, si es que es a eso a lo que te refieres con aprender.

  2. 2 Shoshenskoe Shoshenskoe 11 Jul 2011 0 (0 Votos)

    Pues si no son lo mismo, muy bueno este post (ya me lo sabia pero creo que verlo en este juego de madera valio la pena).

  3. 3 Tay Tay 12 Jul 2011 0 (0 Votos)

    ¡Genial!

  4. 4 Reb Reb 12 Jul 2011 0 (0 Votos)

    deberían mostrar el vídeo en las escuelas!

    • 5 Reb Reb 12 Jul 2011 0 (0 Votos)

      por cierto, te enlazo porque esto hay que compartirlo. beijinhos

  5. 6 Eduardo Eduardo 12 Jul 2011 0 (0 Votos)

    En la casa de las ciencias de Coruña tenemos un cacharrillo como el del siguiente vídeo para hacer una demostración empírica…

    http://www.youtube.com/watch?v=hbhh-9edn3c

    • 7 Reb Reb 12 Jul 2011 0 (0 Votos)

      muy bueno como demostración. me encanta la Casa de las Ciencias de A Coruña desde niña (recuerdo que nos llevaban todos los años con el cole), tendré que hacerle una visita ahora de mayor. saludos

  6. 8 Rafael Miranda Rafael Miranda 13 Jul 2011 0 (0 Votos)

    Tu reflexión desgraciadamente se aplica a tantos otros temas en matemática. El teorema de Pitágoras fue un teorema de de áreas en su origen, y sin embargo la educación academicista lo ha incluso descontextualizado convirtiéndolo en simplemente un fórmula.

    Ahora, existen muchas conceptualizaciones sobre el aprendizaje, pero probablemente la famosa taxonomía de Bloom es la que mejor ilustra lo que dices. Hay aprendizajes enormes y otros más pobres; Bloom planteaba 7 niveles, desde conocimiento, comprensión… hasta evaluación. El punto es que lo que aprendiste del teorema de pitágoras fue un aprendizaje, pero quizás básico.

    Aun así, para mi todo verdadero aprendizaje matemático parte de comprender, antes de eso, el conocer es simplemente recordar… y hay tanta matemática que se enseña con sólo tal propósito. Recordar a hacer algo, sin saber qué se está haciendo en realidad.

    Saludos desde Chile :)

  7. 9 Yrene Yrene 18 Jul 2011 0 (0 Votos)

    Buenísimo! Estaría bien un post parecido para la formulación inorgánica, que se me ha resistido tooooda la vida…;-)

  8. 10 Montse Montse 31 Jul 2011 0 (0 Votos)

    Me ha encantado. Muchas gracias por el post.

  9. 11 Luismi Luismi 4 Ago 2011 0 (0 Votos)

    Anonado me he quedado; y me pregunto yo… porque esto no se explica así en el cole?
    Solo faltaba que en vez de la voz de la chica fuese Epi y Blas.
    Que sencillez…
    Gracias.

  10. 12 de piel de piel 5 Ago 2011 0 (0 Votos)

    Me ha encantado. Muy visual!! Gracias.

  11. 13 aqui_c aqui_c 16 Ago 2011 0 (0 Votos)

    Me encantó el juguete. Otro que hay de pitágoras es uno con líquido; donde se puede ver que teniendo el cuadrado de la hipotenusa lleno, podemos llenar los de los catetos sin que sobre (y viceversa); ese también es bastante gráfico.
    En cuanto a la enseñanza, creo que hay muchísimas cosas por mejorar (escribo desde Argentina), el problema es que la gente dedicada a investigar y desarrollar contenidos primero son pocos, segundo no logran que sus ideas lleguen a los niveles adecuados del gobierno para que luego desciendan hacia los demás docentes.
    Todo este ciclo es tan lento, que apenas alguna idea logra pasar las barreras, ya es obsoleta. Los docentes, individualmente, pueden poner su mejor esfuerzo, pero la realidad es que si no hay programas de formación y mejora continua, no se podrá hacer nada.
    Como ex-docente, muchas veces escuché decir que los alumnos no se interesan por nada; lo que descubrí, especialmente con adolescentes de 16 o 17 años es que son gente MUY interesada, en muchas cosas, sólo hay que poder hablarles en el mismo lenguaje.

  12. 14 perogrullo perogrullo 21 Dic 2011 0 (0 Votos)

    ¡Atención!, pregunta:
    – ¿Cuántas demostraciones existen del mencionado teorema?.
    “Pa nota” ¿y generalizciones?
    S2

Deja una respuesta

Tu correo nunca será publicado. Los campos obligatorios están marcardos con *

Obligatorio
Obligatorio

Patrocinadores

Twitter

  • No public twitter messages

Flickr

  • Una foto de Flickr
  • Una foto de Flickr
  • Una foto de Flickr
  • Una foto de Flickr
  • Una foto de Flickr
  • Una foto de Flickr
  • Una foto de Flickr
  • Una foto de Flickr
  • Una foto de Flickr